Symmetry and Fourier analysis of the ab initio-determined torsional variation of structural and Hessian-related quantities for application to vibration–torsion–rotation interactions in CH3OH
نویسنده
چکیده
The aim of the present paper is to investigate the use of quantum chemistry calculations to obtain the torsional dependence of various structural and vibrational-force-field-related quantities that could help in estimating the vibration–torsion–rotation interaction terms needed to treat perturbations observed in the spectra of methanol-like molecules. We begin by using the Gaussian suite of programs to determine the steepest-descent path from a stationary point at the top of the internal rotation potential barrier in methanol to the equilibrium structure at the bottom of the barrier. This procedure requires determining the gradient $V of the potential (as calculated in mass-weighted Cartesian coordinates) along the internal rotation path. In addition, we use the Gaussian suite to calculate the Hessian $$V along this path and to generate from these second derivatives the 3N 7 small-amplitude vibrational frequencies and the 3N Cartesian vibrational displacements for each of these vibrations. We then symmetrize the internal coordinates used in presenting the structures, gradients, Hessians and vibrational displacements along the path to take into account the periodic variation of the behavior of the three methyl hydrogen atoms Hi as they pass in turn through the Cs-plane of the HOC frame. The symmetrized linear combinations of the CHi stretches, of the OCHi bends, and of the HOCHi dihedral angles of the methyl group depend on the internal rotation angle c and they are determined by considering coordinate transformations from the G6 permutation-inversion group appropriate for internally rotating methanol. This symmetrization procedure permits us to explore the feasibility of expressing the structures, gradients, Hessians, and vibrational displacement vectors along the internal rotation path as short Fourier series in c, which is one of the main goals of this paper. In summary, we find that the symmetrized structures, gradients, and Hessians, as well as nine of the 11 projected vibrational frequencies and the vibrational displacement vectors for the three vibrations occurring primarily in the HOC frame can be expressed by short Fourier series expansions to their precision in the Gaussian output, and that these series involve only sin3nc or only cos3nc terms, as required by G6 symmetry considerations. A preliminary discussion is given of why short Fourier expansions fail for the projected frequencies of the two methyl asymmetric stretches, and for the vibrational displacement vectors of the methyl group vibrational modes. Looking more closely at the symmetrized and projected 3N 3N Hessian, we find algebraically that only elements in the (3N 7) (3N 7) small-amplitude-vibrational block of the Hessian are useful for spectroscopic problems. Non-zero elements in the rest of the 3N 3N symmetrized and projected Hessian cannot be converted into quantities needed for perturbation studies. 2010 Elsevier Inc. All rights reserved.
منابع مشابه
Coupled Flap-Lag-Torsional Vibration Analysis of Pre-twisted Non-uniform Helicopter Blades
An approximate numerical mthod is presented for analysis and determination of modal characteristics in straight, pretwisted non-unifom helicopter blades. The analysis considers the coupled flapwise bending (out of plane), chordwise bending (in plane), and torsion vibration of both rotating and non-rotating blades. The proposed method is based on the integral expansion of Green functions (struct...
متن کاملCoupled Flap-Lag-Torsional Vibration Analysis of Pre-twisted Non-uniform Helicopter Blades
An approximate numerical mthod is presented for analysis and determination of modal characteristics in straight, pretwisted non-unifom helicopter blades. The analysis considers the coupled flapwise bending (out of plane), chordwise bending (in plane), and torsion vibration of both rotating and non-rotating blades. The proposed method is based on the integral expansion of Green functions (struct...
متن کاملAb initio study on the variation of stacking interactions of aniline and hydrated aniline systems
The use of appropriate level of theories for studying weak interactions such as 8-8 stackinginteractions of aromatic molecules has been an important aspect, since the high level methods havelimitations for application to large molecules. The differences in the stacking energies of variousaromatic molecular structures are found significant. It is also very important for identifying the mostfavor...
متن کاملInvestigation of effect of magnetic ordering on structural and electronic properties of double perovskites Sr2BWO6 (B = Co, Ni, Cu) using ab initio method
Structural and electronic properties of double perovskites Sr2BWO6 (B = Co, Ni, Cu) were studied for each of three magnetic configurations nonmagnetic, ferromagnetic, and antiferromagnetic by using density functional theory in generalized gradient approximations (GGA) and strong correlation correction (GGA + U). Due to magnetic transition from antiferromagnetic to nonmagnetic phase, an electr...
متن کاملAb Initio Studies of Rotation and Solvent Effects for two important membrane molecules: DPPC and DMPC
DPPC (dipalmitoylphosphatidylcholine) and DMPC (dimyristoylphosphatidylcholine) are taken asphospholipids with an equal polar heads and with the difference in the length of hydrocarbonchains. Results obtain from the structural optimization of the isolated DPPC and DMPC in the gasphase, at the Hartree-Fock level of theory by means of STO-3g,3-21G, 6-31G and 6-31G* basissets. the most important d...
متن کامل